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Subtracting equation (11) from equation (10) we obtain 

ai pf - p. S a Dope 1 - a D/P, _~~,___~__--- 
az PIP, 4 - Er psDt p,‘Dt 

(12) 

where, as in [i], 

j = (1 - a) 0, C au,. (13) 

Returning to equation (10). the term a/&(au,,) can be 
written 

~CauJ =afU + V,] + (i + Kj)g, (14) 

where, as in ‘[ I], 

V, = v@ - j. 

With V, dependent only on a, as in [l], 

(15) 

(16) 

Eliminating j and ?j/& from equation (16) using equation 
(12) and substituting the result for a/&(av,) into equation 
(10) we obtain 
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Equation (17), the void propagation equation, is identical 
to equation (21) of [l]. The quantity S/(&, - &) can be 
seen, by inspection of equation (7), to be identical to r,, 
the vapour source term given by equation (22) of [l]. 

We see that the results of [l] can be derived entirely from 
a single continuity equation for the mixture together with 
the conventional energy conservation equation. Two con- 
tinuity equations, one for each phase, are not necessary. 
The additional equation is brought into the analysis of 
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[l, 2) by the introduction of an additional variable, that is, 
r, the vapour source term. Identifying S/(E, - EJ) as the 
vapour source term we see that equations (8) and (9) are the 
continuity equations for the vapour and liquid phases, 
respectively. Thus the two continuity equations are implied 
in the mixture continuity and the conventional energy 
conservation equations. 

Zuber and Staub [2] say that basicdifFerences exist between 
their void propagation equation and the vc$ propagation 
equation of Kanai et al. [S] who start, as in this note, from 
the mixture continuity and the conventional energy con- 
servation equations. Kanai et al. consider two different 
assumptions for the relative velocity between vapour and 
liquid, firstly that slip ratio is dependent only on the void 
fraction and secondly that slip velocity is dependent only 
on the void fraction. For the first assumption, the differences 
observed by Zuber and Staub can be traced to a comparison 
of incompatible equations. Equation (59) of [2], an equation 
in the average void across the duct, should have been used 
instead of equation (30) of [2], an equation in the local void. 
For the second assumption, the differences can be traced to 
an erroneous equation (9) of 131. 
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REJOINDER 

IN THE introduction to his letter [l], N. Spinks states: (3) Zuber and Staub derive a void propagation equation 
(1) Zuber and Staub r21 place much emphasis on using from three conservation equation& that is, continuity of 

two equations of continuity for analysis of boiling two- liquid, continuity of vapour and a particular form of the 
phase flow. conservation energy equation. 

(2) Consequently it is most important that the question 
be resolved of what constitutes a sufficient number of Following the derivation of his equation (17), Spinks 
conservation equations. concludes : 
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(4) We see that the results (of Zuber and Staub) can be 
derived entirely from a single continuity equation for the 
mixture together with the conventional energy con- 
servation equation. Two continuity equations, one for 
each phasq are not nv. 

This statement and conclusion are misleading and in 
error because : 

(1) The void propagation equation, i.e. equation (17) in [Z] 
was not derived using the energy equation of the mixture. 

Its derivation was based however on the continuity 
equation only, following the well established procedure 
used in deriving the Fusion equation. 

(2) The void propagation equation is not a dependent 
equation, derived from the continuity equation of the 
mixture and the energy equation of the mixture. 

It is however, an independent equation, based on the 
continuity equation of the vapor and analogous to the 
diffusion equation, which should be added to the three 
conservation equations (continuity, momentum and 
energy) of the mixture in order to properly describe a 
two-phase flow system. 

(3) The vapor source term r, in the void propagation 
equation, i.e. equation (17) of [2] cannot be evaluated 
from the energy equation of the mixture (except in a 
particular case discussed below). 

This term, which is analogous to the soura term in 
the continuity equation for a given species in a chemically 
reacting system, is specified however by a constitutive 
equation of evaporation appropriate to a particular flow 
regime. 

In what follows we shall confirm the validity of these 
three comments. 

1. THE VOID DIFFUSION AND VOID 
PROPAGATION EQUATIONS 

It is indeed surprising that one would even question the 
need to use two continuity equations in order to formulate 
properly a two-phase flow system. Junior course text books 
on transport phenomena show (see for example, p. 560 in 
[3]) that multi-component systems, the number of con- 
tinuity equations is equal to the number of components. 
It is customary to add these n continuity equations in a 
continuity equation of the mixture and to express the 
remaining n - 1 as diffusion equations But with one 
exception noted in [2]; this however was never done in 
amt&ea of boiling two-phase flow systems. 

It is precisely because the great majority of analyses 
presently available are incomplete (as we have noted in [2]) 
that we introduced in the formulation the second continuity 
equation, i.e. that of the vapor. However, instead of ex- 
pressing it as a void diffusion equation, we used the concept 
of kinematic waves to transform it into a void propagation 
equation [4] along the lines of [S]. This was done because 

data on diffusion coefficient in boiling mixtur*, are almost 
non-existent, whereas a method for determinii the vapor 
drift velocity is available [6, 71. It is evident tiom Spinks’ 
comments that he neither appreciates the relation between 
the void propagation equation and the void diffusion equa- 
tion (which was outlimed in Appendix A of [2]), nor the 
significance and the method of deriving the void diffusion 
equation. It is desirable therefore to show the relation and 
derivation in more detaiL 

Using the nomenclature of [2], the continuity equations 
for the liquid and the vapor are given respectively by 

aCU - 4 P,I + a[(1 - 00 ppfl 
at a2 = r/ (1) 

&wJ + G(ap,u,) = 
at a.? 

r 

* 

where r, and r, are the rates of masS formation of the 
liquid and of the vapor per unit volume. The conservation 
of mass requires that 

rl + rr = 0. (3) 

The significance of the vapor source term rF given by a 
constitutive equation of net vaporization [7,2] is discussed 
further in Section 3 below. 

Carrying out the differentiation and eliminating da/at 
term between equation (1) and equation (2) and in view of 
equation (3) we obtain, for the one-dimensional problem 

~C(l_a)“,+a”~]=ai=T.(PI-Pd (1--4DfPf 
a2 pe pf -- P, Dt 

_ a D#P* 
up Dt ’ 

(4) 

Consequently, the divergence of the volumetric flux density 
j, of th&‘&xture is proportional to the rate of vapor mass 
formation per unit volume of the system and to the com- 
pressibilities of the liquid and of the vapor. 

The derivation of either the void diffusion or of the void 
propagation equation follows the standard procedure (see for 
example, p. 518 in [8]). 

We start with the continuity equation for the vapor and 
express the vapor velocity in terms of the velocity of the 
center of volume j, and of the vapor drift velocity V,, thus 
from equation (2), after differentiation 

a[!$+a#2]+p,ig+g[a(j+ v,,]}=r,. (5) 

Differentiating the term which contains j, and in view of 
equation (4b we obtain after some rearrangement: 

(6) 
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The third term on the left-hand side of this equation can be 
expressed in terms of the driit velocities of the vapor Ve, 
and of the liquid V, thus 

It is conventional procedure to express the right-hand side 
of this equation in terms of the diffusion coellicient 0, thus 

~[a(1 - aI& - V,,)] = - Dz. 
Inserting equation (8) in equation (6) we obtain the void 

dilfusion equation, 

aa aa a aa r,p, 
z+jaz=z Daz +-- ( > pr .Qf 

++a(1 -a) 
(9) 

If we neglect the vapor source term I’, and the two com- 
pressibilities we obtain equation (A-3) in [2], which is 
identical to the diffusion equation, i.e. to equation (8.1-11) 
in [S’J. 

It is evident that in order to use the void diffusion equation, 
it is necessary to know the diffusion coe&rient A It was, 
noted in [4, 51 that experimental data on the dilhtsion 
coeffroient for boiling two-phase mixtures are almost 
non-existent. Furthermore, another difficulty may arise 
when the diffusion coefficient depends on the concentration 
a; in such a case equation (9) becomes a non-linear partial 
di@eremiaI equation for which soiutions am not usually 
available. It becomes necessary, therefore, to seek an alternate 
more amenable approach. 

An alternate method was proposed in [S, 91 w&e the 
concept of kinematic waves was used instead of the djkusion 
coefficient. The application of kinematic waves to the present 
problem is advantageous because the analysis and results 
of [6, 11 provide a method for determining the vapor drift 
velocity I& It is shown in ES, 6,7f that for most lIow regimes 
of practical interest the vapor drift velocity V’ is either 
constant or a function of the void fraction OL Consequently 
we can express the third term on the left-hand side of 
equation (6) as 

By substituting equation (10) in equation (6) we obtain 
the void propagation equation for a two-phase flow system 
with a change of phase [2,4] thus 

(11) 

where the velocity of kinematic waves is 
W 

Cx=j+ Vj+a--@ g &i 
(12) 

and where the characteristic reaction frequency 62 is given by 

n2?~+a(1-a) -___k!g@ ( 1 DfPf 

> 
(13) 
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Equations (11-13) above are identical with equations 
(17,19,20) in [2]. It is seen that contrary to Spinks’ statement, 
the void propagation equation is derived independently 
of the energy equation of the mixture. 

2. TRADITIONAL FORMULATIONS 

Spinks concludes that the void propagation equation can 
be derived from the continuity equation of the mixture and 
the energy equation of the mixture. He notes, furthermore, 
that two continuity equations are not necessary. These 
conclusions am not only erroneous but show also a lack of 
appreciation of the role of the diffusion equation in the 
formuiation and analyses of multicomponent mixtures. 

It was shown above that the derivation of the void propa- 
gation does not depend on the energy equation of the 
mixture. It is obtained however, from the continuity equation 
of the vapor following the well established procedure used 
in deriving the diffusion equation. It was noted also that for a 
system consisting of n componentq the governing set of 
fiekl equations consists of n - 1 diffusion equations in 
addition to the three conservation equations (continuity, 
momentum and energy) for the mixture. For a two-phase 
system, therefore, either the void diffusion or the void 
propagation equation is to be added to the latter three 
equations, Furthermore, we also know from elementary 
algebra, that a system is mathematically deftned only if 
the number of variables is equal to the number of independent 
equations. 

Let us examine now Spinks’ conclusion Were his con- 
clusions correct, then obviously neither the void propagation 
equation, nor for that matter the void diffusion equation, 
would be an independent equation since, according to 
him, it can be derived from the continuity equation of the 
mixture and the energy equation of the mixture. Clearly 
were this the case the governing set of independent equations 
would consist only of the three conservation equations for 
the mixture Furthermore, from our understanding of 
multi-component mixtures we could anticipate that such 
system would be incomplete. This indeed is the case as 
discussed in [lo]. 

It is shown in [lOI that the traditions formulation based 
on the slip flow mode1 which have been used heretofore to 
analyze dynamic characteristics of boiling systems are: 
(a) Incomplete and inadequate when applied to two-phase 
mixtures in thermal non-equilibrium, and (b) Inadequate 
for analyzing properly propagation phenomena and dyna- 
mic characteristics of boiling two-phase flow systems The 
reasons are discussed in mom detail in [lo]. The set of field 
equations and of constitutive equations that is required to 
properly formulate the problem is considered further in 
[ll, 123. 
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It can be concluded that were Spinks’s conclusion correct, 
then neither the void propagation equation nor the void 
diffusion equation would be an independent equation. Were 
this the case, the governing set of equations would be 
incomplete. 

3. CONSTITUTIVE EQUATION OF 
EVAPORATION 

The error in Spinks’ analysis and conclusions stems from 
his apparent belief that the vapor source term F, in the void 
propagation equation is identical to the term S/E, - E,, 
which he derives from the energy equation of the mixture 
and defines by equation (7) of [l]. 

We emphasized in [Z] and the continuity equation for the 
vapor, i.e. equation (2) clearly indicates, that the vapor 
source term F, has the same meaning as the mass source 
term in the continuity equation of a given species undergoing 
a chemical reaction It is well known that in chemically 
reacting mixtures the source term is specified by an appropri- 
ate constitutive equation for chemical reaction. We noted 
therefore in [2] that in order to specify F, in boiling mixtures, 
it is necessary to specify the appropriate constitutive equa- 
tion of evaporation. 

It was also discussed in [2] that such a constitutive 
equation of evaporation will depend on the mode of heat 
transfer in the vicinity of the vapor-liquid interface and on 
the geometry of this interface. Consequently it will change 
with a change of flow regimes. 

For example, in nucleate boiling the constitutive equation 
of evaporation, i.e. Ta depends on (1) the rate of bubble 
nucleation, (2) the rate of bubble growth and (3) the bubble 
population density [7, IO]. Whereas in the fog flow regime 
Ts, depends on the droplet number density and on the rate 
of droplet evaporation [lo]. A constitutive equation of 
evaporation appropriate to adiabatic flashing flows was 
first derived in [13], is considered further in [14]. Whereas 
a constitutive equation of condensation appropriate to 
adiabatic condensing nozzle flow was first formulated in [15]. 

Spinks is mistaken if he believes that the vapor source 
term F, is generally specified by the energy equation for the 
mixture, i.e. equation (12) in [2]. We were careful to note in 
[2] that for the purpose of that paper only Ts could be deter- 

mined from equation (12) of [2]. Thii was possible because 
in [2] we considered a mixture in thermal equilibrium. 
It is only for such a mixture that the energy equation of the 
mixture can be used to evaluate r, and yield equation (41) 
which was used throughout the analysis of [2]. 

Clearly in general the vapor source term r, cannot be 
determined from the energy equation of the mixture but 
must be evaluated from a constitutive equation of evapora- 
tion appropriate to a particular flow regime. Indeed it is 
shown in [lo] that such an equation for F,, determines the 
level of thermal non-equilibrium of a two-phase flow system. 

It is evident that the term S/E, - E,, defined by equation 

(7) of [l] and obtained therefore from the energy equation 
of the mixture, does not correspond to the constitutive 
equation of evaporation ConsequentIy Spinks’ conclusion 
that the void propagation equation can be derived from 
the energy equation of the mixture is erroneous. 

4. CONCLUSION 
In view of the foregoing it can be concluded that Spinks’ 

statements and conclusions are misleading and erroneous. 
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